Certificate of Quality Assurance

PRODUCT NAME: Natural Tincture
PRODUCT STRENGTH: 900 mg
LOT NUMBER: HTNAT1000-T283
OIL BATCH NUMBER: CONO19-96
DATE OF MANUFACTURE: 11/11/2019

Expiration date is 18 months under sealed conditions.

DATE OF ANALYSIS: 11/11/2019

ACTIVE INGREDIENT: Phytocannabinoid-Rich Hemp Oil

INACTIVE INGREDIENTS: Organic Olive Oil

Physical Attributes of Raw Hemp Oil

Attribute	Acceptance Criteria	Result
Appearance	Viscous Dark Amber Oil Possible Crystal Formation	Conforms
Aroma	Characteristic Hemp Aroma	Conforms
Dissolution	Not Cloudy or Turbid, Characteristic Color	Conforms
Microbial Testing	Total Aerobic Count <2000 cfu/g Total Yeast and Mold <2000 cfu/g	Conforms

Cannabinoid Potency of Raw Hemp Oil

Cannabinoid	Weight %
CBD	84.35
CBG	<0.03
CBN	<0.03
THC	ND
СВС	<0.03
THC-A	ND
CBD-A	<0.03

Pesticides*

Compound	Result	Compound	Result
Acequinocil	ND	Spinosad	ND
Pyrethrium	ND	Spirotetramat	ND
Spiromesifin	ND	Bifenazate	ND
Abamectin	ND	Fenoxycarb	ND
Imidacloprid ND		Paclobutrazol	ND

Terpene Results*

Compound	Weight %	Compound	Weight %
β-Bisabolene	1.0-3.0	Camphene	0.1-0.2
β-Farnesene	1.0-2.0	E-Farnesene	0.1-0.2
Gualol	0.5-2.0	Farnesol	0.1-0.2
β-Maaliene	0.5-2.0	α-Bisabolol	< 0.1
Calarene	0.5-1.5	p-Cymene	< 0.1
β-Caryophyllene	0.1-1.0	Linalool	< 0.1
α-Humulene	0.1-1.0	Myrcene	< 0.1
Cadinene	0.1-1.0	Phytol	< 0.1
α-Gurjunene	0.1-0.5	Isopulegol	< 0.1
d-Limonene	0.1-0.5	Terpinene	< 0.1
Nerolidol	0.1-0.5	Geraniol	< 0.1
α-Pinene	0.1-0.5	Myrcene	< 0.1
Aristolene	0.1-0.3	γ-Terpinene	< 0.1
Eucalyptol	0.1-0.2	δ-3-Carene	< 0.1

Residual Solvents*

Solvent	Weight %
Acetone	Compliant with USP<467>
Butane	Compliant with USP<467>
Ethanol	Compliant with USP<467>
Hexane	Compliant with USP<467>
Isobutane	Compliant with USP<467>
Isopropanol	Compliant with USP<467>
Pentane	Compliant with USP<467>

Certificate of Quality Assurance

PRODUCT NAME: Natural Tincture
PRODUCT STRENGTH: 900 mg
LOT NUMBER: HTNAT1000-T283
OIL BATCH NUMBER: CONO19-96
DATE OF MANUFACTURE: 11/11/2019

Expiration date is 18 months under sealed conditions.

DATE OF ANALYSIS: 11/11/2019

ACTIVE INGREDIENT: Phytocannabinoid-Rich Hemp Oil

INACTIVE INGREDIENTS: Organic Olive Oil

Heavy Metals*

Metal	Result
Cadmium	Compliant with USP<233>
Lead	Compliant with USP<233>
Arsenic	Compliant with USP<233>
Mercury	Compliant with USP<233>

Analysis Results for Finished Product

7 mary 515 Nesares 101 1 mished 1 roduce						
Attribute	Acceptance Criteria	Result				
Appearance	Light Yellow to Green Liquid	Conforms				
Aroma	Characteristic Hemp Odor	Conforms				
Cannabidiol Content	95% to 110% of Label Claim	Conforms				
THC Content	None Detected	Conforms				

^{*} Results based on testing of multiple batches of hemp oil raw material.

Quality Certified by:

Matthew Plenert, Ph.D

Head Chemist and Laboratory Manager

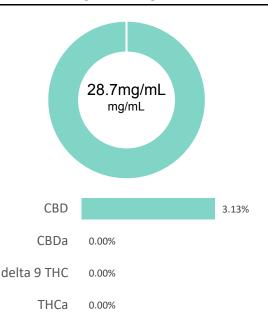
Date

QC Unit released by:

David Boaz

QC Manager

Date


CERTIFICATE OF ANALYSIS

prepared for: MY CBD TEST

HTNAT1000-T283

Batch ID:	HTNAT1000-T283	Test ID:	7053571.0042
Reported:	19-Nov-2019	Method:	TM14
Туре:	Solution		
Test:	Potency		

CANNABINOID PROFILE

Compound	LOQ (mg/mL)	Result (mg/mL)	Result (mg/g)
Delta 9-Tetrahydrocannabinolic acid (THCA-A)	0.56	0.00	0.0
Delta 9-Tetrahydrocannabinol (Delta 9THC)	0.28	0.00	0.0
Cannabidiolic acid (CBDA)	0.48	0.00	0.0
Cannabidiol (CBD)	0.27	28.70	31.3
Delta 8-Tetrahydrocannabinol (Delta 8THC)	0.31	0.00	0.0
Cannabinolic Acid (CBNA)	0.77	0.00	0.0
Cannabinol (CBN)	0.34	0.00	0.0
Cannabigerolic acid (CBGA)	0.49	0.00	0.0
Cannabigerol (CBG)	0.28	0.00	0.0
Tetrahydrocannabivarinic Acid (THCVA)	0.48	0.00	0.0
Tetrahydrocannabivarin (THCV)	0.25	0.00	0.0
Cannabidivarinic Acid (CBDVA)	0.45	0.00	0.0
Cannabidivarin (CBDV)	0.24	0.60	0.7
Cannabichromenic Acid (CBCA)	0.42	0.00	0.0
Cannabichromene (CBC)	0.51	0.00	0.0
Total Cannabinoids		29.30	32.00
Total Potential THC**		0.00	0.00
Total Potential CBD**		28.70	31.32

NOTES:

Density = 0.9176g/mL

N/A

% = % (w/w) = Percent (Weight of Analyte / Weight of Product)

Total THC = THC + (THCa *(0.877)) and Total CBD = CBD + (CBDa *(0.877))

FINAL APPROVAL

Ryan Weems 19-Nov-2019 4:06 PM

PREPARED BY / DATE

David Green 19-Nov-2019 4:15 PM

APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Laboratories, LLC, in the condition it was received. Botanacor Laboratories, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Laboratories, LLC. ISO/IEC 17025:2005 Accredited A2LA Certificate Number 4329.02

^{*} Total Cannabinoids result reflects the absolute sum of all cannabinoids detected.

^{**} Total Potential THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during decarboxylation step

Report Number: 19-013856/D02.R00

Report Date: 11/19/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 11/14/19 07:30

Customer: My CBD Test
Product identity: HTNAT1000-T283

Client/Metrc ID:

Laboratory ID: 19-013856-0002

Summary						
Pesticides:						
All analytes passing and less than LOQ.						
Metals:						
Less than LOQ for all analytes.						
Microbiology:						
Less than LOQ for all analytes.						
Metals: Less than LOQ for all analytes. Microbiology:						

Report Number: 19-013856/D02.R00

Report Date: 11/19/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 11/14/19 07:30

Customer: My CBD Test

Product identity: HTNAT1000-T283

Client/Metrc ID:

Sample Date:

Laboratory ID: 19-013856-0002
Relinquished by: Received By Mail

Temp: 14.9 °C

Sample Results

Microbiology								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
E.coli	<loq< td=""><td></td><td>cfu/g</td><td>10</td><td>1910439</td><td>11/17/19</td><td>AOAC 991.14 (Petrifilm)</td><td>Х</td></loq<>		cfu/g	10	1910439	11/17/19	AOAC 991.14 (Petrifilm)	Х
Total Coliforms	< LOQ		cfu/g	10	1910439	11/17/19	AOAC 991.14 (Petrifilm)	Χ
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	1910442	11/17/19	AOAC 2014.05 (RAPID)	X
Yeast (RAPID Petrifilm)	<loq< td=""><td></td><td>cfu/g</td><td>10</td><td>1910442</td><td>11/17/19</td><td>AOAC 2014.05 (RAPID)</td><td>X</td></loq<>		cfu/g	10	1910442	11/17/19	AOAC 2014.05 (RAPID)	X

Report Number: 19-013856/D02.R00

Report Date: 11/19/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 11/14/19 07:30

Pesticides	Method	AOAC	2007.01 & EN	15662 (mod)	Units mg/kg Ba	atch 1910492	Analy	ze 11/18/19 08:59 AM
Analyte	Result	Limits	s LOQ Status	Notes	Analyte	Result	Limits	LOQ Status Notes
Abamectin	<loq< td=""><td>0.50</td><td>0.250 pass</td><td></td><td>Acephate</td><td>< LOQ</td><td>0.40</td><td>0.250 pass</td></loq<>	0.50	0.250 pass		Acephate	< LOQ	0.40	0.250 pass
Acequinocyl	<loq< td=""><td>2.0</td><td>1.00 pass</td><td></td><td>Acetamiprid</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	2.0	1.00 pass		Acetamiprid	< LOQ	0.20	0.100 pass
Aldicarb	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Azoxystrobin</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass		Azoxystrobin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Bifenazate	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Bifenthrin</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass		Bifenthrin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Boscalid	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Carbaryl</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass		Carbaryl	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Carbofuran	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Chlorantraniliprole</td><td>e < LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Chlorantraniliprole	e < LOQ	0.20	0.100 pass
Chlorfenapyr	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Chlorpyrifos</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	1.0	0.500 pass		Chlorpyrifos	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Clofentezine	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Cyfluthrin</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	0.20	0.100 pass		Cyfluthrin	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Cypermethrin	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Daminozide</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	1.0	0.500 pass		Daminozide	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Diazinon	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Dichlorvos</td><td>< LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Ethoprophos</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass		Ethoprophos	< LOQ	0.20	0.100 pass
Etofenprox	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Etoxazole</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.40	0.200 pass		Etoxazole	< LOQ	0.20	0.100 pass
Fenoxycarb	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Fenpyroximate</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.20	0.100 pass		Fenpyroximate	< LOQ	0.40	0.200 pass
Fipronil	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Flonicamid</td><td>< LOQ</td><td>1.0</td><td>0.400 pass</td></loq<>	0.40	0.200 pass		Flonicamid	< LOQ	1.0	0.400 pass
Fludioxonil	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Hexythiazox</td><td>< LOQ</td><td>1.0</td><td>0.400 pass</td></loq<>	0.40	0.200 pass		Hexythiazox	< LOQ	1.0	0.400 pass
Imazalil	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Imidacloprid</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.20	0.100 pass		Imidacloprid	< LOQ	0.40	0.200 pass
Kresoxim-methyl	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Malathion</td><td>< LOQ</td><td>0.20</td><td>0.100 pass</td></loq<>	0.40	0.200 pass		Malathion	< LOQ	0.20	0.100 pass
Metalaxyl	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Methiocarb</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass		Methiocarb	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Methomyl	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>MGK-264</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.40	0.200 pass		MGK-264	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Myclobutanil	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Naled</td><td><loq< td=""><td>0.50</td><td>0.250 pass</td></loq<></td></loq<>	0.20	0.100 pass		Naled	<loq< td=""><td>0.50</td><td>0.250 pass</td></loq<>	0.50	0.250 pass
Oxamyl	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Paclobutrazole</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	1.0	0.500 pass		Paclobutrazole	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Parathion-Methyl	<loq< td=""><td>0.20</td><td>0.200 pass</td><td></td><td>Permethrin</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.200 pass		Permethrin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Phosmet	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Piperonyl butoxid</td><td>le < LOQ</td><td>2.0</td><td>1.00 pass</td></loq<>	0.20	0.100 pass		Piperonyl butoxid	le < LOQ	2.0	1.00 pass
Prallethrin	<loq< td=""><td>0.20</td><td>0.200 pass</td><td></td><td>Propiconazole</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.20	0.200 pass		Propiconazole	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Propoxur	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Pyrethrin I (total)</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	0.20	0.100 pass		Pyrethrin I (total)	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Pyridaben	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Spinosad</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass		Spinosad	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat	< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole	< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass					
Metals								

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	<loq< td=""><td></td><td>mg/kg</td><td>0.100</td><td>1910522</td><td>11/18/19</td><td>AOAC 2013.06 (mod.)</td><td>X, H</td></loq<>		mg/kg	0.100	1910522	11/18/19	AOAC 2013.06 (mod.)	X, H
Cadmium	< LOQ		mg/kg	0.100	1910522	11/18/19	AOAC 2013.06 (mod.)	X, H
Lead	< LOQ		mg/kg	0.100	1910522	11/18/19	AOAC 2013.06 (mod.)	X, H
Mercury	< LOQ		mg/kg	0.100	1910522	11/18/19	AOAC 2013.06 (mod.)	X, H

Report Number: 19-013856/D02.R00

Report Date: 11/19/2019 **ORELAP#:** OR100028

Purchase Order:

Received: 11/14/19 07:30

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram mg/kg = Milligram per kilogram = parts per million (ppm) % wt = μ g/g divided by 10,000

Glossary of Qualifiers

H: Holding time was exceeded. X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager